"

開戸|礼唫【135e.cn】彩票123安卓下载✅顶级正规遊戏平台✅业内最顶尖原生APP,一站体验所有遊戏,彩票123安卓下载✅7*24H在线服务✅值得您信赖|期待您加入我们!

<rt id="6ekqu"><optgroup id="6ekqu"></optgroup></rt><rt id="6ekqu"><optgroup id="6ekqu"></optgroup></rt>
<rt id="6ekqu"><optgroup id="6ekqu"></optgroup></rt>
<rt id="6ekqu"><optgroup id="6ekqu"></optgroup></rt>
<rt id="6ekqu"></rt>
<acronym id="6ekqu"></acronym>
<acronym id="6ekqu"></acronym>
<sup id="6ekqu"></sup><rt id="6ekqu"></rt>
<acronym id="6ekqu"></acronym>
"
當前位置: 華中科技大學數學與統計學院 > 科學研究 > 學術活動 > 正文

熱點關注

【學術報告】2019年12月14日晚上王磊副教授來我院舉辦學術講座

2019-12-09 15:57:21    瀏覽次數:

字體 色彩方案

報告人:王磊 副教授(合肥學院)

報告題目:Singular cycles connecting saddle periodic orbit and saddle equilibrium in piecewise smooth systems

報告摘要:For flows, the singular cycles connecting saddle periodic orbit and saddle equilibrium can potentially result in the so-called singular horseshoe, which means the existence of a non-uniformly hyperbolic chaotic invariant set. However, it is very hard to find a specific dynamical system that exhibits such singular cycles in general. In this paper, the existence of the singular cycles involving saddle periodic orbits is studied by two types of piecewise smooth systems: One is the piecewise smooth systems having an admissible saddle point with only real eigenvalues and an admissible saddle periodic orbit, and the other is the piecewise smooth systems having an admissible saddle-focus and an admissible saddle periodic orbit. Several kinds of sufficient conditions are obtained for the existence of only one heteroclinic cycle or only two heteroclinic cycles in the two types of piecewise smooth systems, respectively. In addition, some examples are presented to illustrate the results.

報告人簡介:王磊,合肥學院副教授,2016年博士畢業于華中科技大學數學與統計學院,2018-2019年到德國亞琛工業大學數學研究所訪問一年,研究方向為非光滑動力系統、混沌。

報告時間:2019年12月14日(星期六)晚上19:00-20:30

報告地點:科技樓南樓602會議室


彩票123安卓下载
<rt id="6ekqu"><optgroup id="6ekqu"></optgroup></rt><rt id="6ekqu"><optgroup id="6ekqu"></optgroup></rt>
<rt id="6ekqu"><optgroup id="6ekqu"></optgroup></rt>
<rt id="6ekqu"><optgroup id="6ekqu"></optgroup></rt>
<rt id="6ekqu"></rt>
<acronym id="6ekqu"></acronym>
<acronym id="6ekqu"></acronym>
<sup id="6ekqu"></sup><rt id="6ekqu"></rt>
<acronym id="6ekqu"></acronym>